
Ontology-Based Methods for Enhancing
Autonomous Vehicle Path Planning

Ron Provine1, Craig Schlenoff2, Stephen Balakirsky2, Scott Smith1, Mike Uschold1

1Boeing Phantom Works 2Nat. Inst. of Standards and Technology

 P.O. Box 3707, m/s 7L-43 100 Bureau Drive, Stop 8230
Seattle, WA 98124-2207, USA Gaithersburg, MD 20899, USA
ronald.c.provine@boeing.com {stephen, craig.schlenof}@nist.gov

Abstract
We report the results of a first implementation
demonstrating the use of an ontology to support
reasoning about obstacles to improve the capabilities
and performance of on-board route planning for
autonomous vehicles. This is part of an overall effort to
evaluate the performance of ontologies in different
components of an autonomous vehicle within the
4D/RCS system architecture developed at NIST. Our
initial focus has been on simple roadway driving
scenarios where the controlled vehicle encounters
potential obstacles in its path. As reported elsewhere
[9], our approach is to develop an ontology of objects
in the environment, in conjunction with rules for
estimating the damage that would be incurred by
collisions with different objects in different situations.
Automated reasoning is used to estimate collision
damage; this information is fed to the route planner to
help it decide whether to plan to avoid the object. We
describe the results of the first implementation that
integrates the ontology, the reasoner and the planner.
We describe our insights and lessons learned and
discuss resulting changes to our approach.

1 Introduction

a) Statement of the Problem

An autonomous vehicle is an embodied intelligent
system that can operate independently from human
supervision. The field of autonomous vehicles is
continuing to gain traction with both researchers and
practitioners. Funding for research in this area has
continued to grow over the past few years, and recent
high profile defense-related funding opportunities have
started to push theoretical research efforts into
practical use.

To behave appropriately in an uncertain environment,
many researchers and practitioners believe that “the

vehicle must have an internal representation (world
model) of what it experiences as it perceives entities,
events, and situations in the world. It must have an
internal model that captures the richness of what it
knows and learns, and a mechanism for computing
values and priorities that enables it to decide what it
wishes to do.” [3]. The inability to accurately model
the world hinders effective task planning and execution
and thus the overall effectiveness of the vehicle. A
major challenge in autonomous vehicles is the ability
to accurately maintain this internal representation of
pertinent information about the environment in which
the vehicle operates. Our approach is to enhance
existing world modeling methods using an ontology-
based model to represent certain aspects of the
vehicle’s environment.

b) The 4D/RCS Reference Model Architecture

For reasons discussed more fully in [9] we have
selected the Real-Time Control System (4D/RCS) [1,2]
as the architecture in which we implement and evaluate
the use of ontologies for autonomous vehicles. 4D/RCS
is a hierarchical, distributed, real-time control system
architecture that provides clear interfaces and roles for
a variety of functional elements.

Under 4D/RCS, the functional elements of an
intelligent system can be broadly considered to
include: behavior generation (task decomposition and
control), sensory processing (filtering, detection,
recognition, and grouping), world modeling (store and
retrieve knowledge and predict future states), and value
judgment (compute cost, benefit, importance, and
uncertainty). These are supported by a knowledge
database and a communication system that
interconnects the functional elements and the
knowledge database. This collection of modules and
their interconnections make up a generic node in the
4D/RCS reference model architecture (see Figure 1)
[3]. A generic node is defined as a part of the 4D/RCS
system that processes sensory information, computes
values, maintains a world model, generates predictions,
formulates plans, and executes tasks. Each module in
the node may have an operator interface.

c) Vehicle Level Planning Within 4D/RCS

Planning is done at every level within the 4D/RCS
architecture. In this effort, we will be focusing on
vehicle-level planning, which plans approximately 20
seconds into the future with a replanning rate of one to
two seconds.

As described in [5], the NIST vehicle-level behavior
generation system utilizes incrementally created
planning graphs to formulate potential vehicle
trajectories. It combines both logic-based and cost-
based planning approaches in order to allow for the
creation of logic-constrained cost optimal plans with
respect to possibly dynamic environments, user
objectives, and constraints. It includes the ability to
implement both hard and soft constraints. Hard
constraints are based on derived domain feature
predicates and are used to incrementally construct a
planning graph. Soft constraints allow the system to
exhibit a preference for one form of state transition
over another. These preferences are controlled through
the use of a cost function during the incremental
construction of the planning graph and lead to favoring
certain system behaviors over others.

d) Our Initial Focus

An ontology component promises to be helpful in many
aspects of the 4D/RCS architecture. For our purposes, an
ontology is a formal, declarative, and computer-
interpretable knowledge representation that supports
automated reasoning to infer additional information and
check constraints.

Our initial efforts are aimed at assisting the planner in
deciding upon the most cost-effective plan, focusing on
the value judgment and behavior generation components,

in particular. The planner utilizes the results of reasoning
over the ontology.

A major assumption in this work is that objects in the
environment will be identified by lower level sensory
processing algorithms by the time the vehicle-planner
operates on them. This is a major research area in itself,
but object classification is outside the scope of this paper.

The value judgment component evaluates perceived
and planned situations. It computes what is important
(for attention), and what is rewarding or punishing (for
learning). The value judgment component assigns
priorities and computes the level of resources to be
allocated to tasks. It assigns values and costs to
recognized objects and events, and computes
confidence factors for observed, estimated, and
predicted attributes and states [2]. The outputs of the
value judgment component are used by the behavior
generation component to select and set priorities during
route planning.

Our approach is to use ontology-based reasoning to
better inform the planner about the costs and
consequences of colliding with other objects. By
representing the factors that could impact a path’s cost,
the ontology is used to reason over the information that
is available to determine what the consequences of a
collision would be. Further reasoning is then performed
to determine the cost of these consequences. This cost
is fed back to the planner for consideration when
deciding the “cheapest” plan for the system to execute.
In cost-based planners, the cheapest plan is considered
the best plan.

In the next section, we describe the details of how we
integrated the ontology with the planning system. The
issues and insights developed during this first phase of
the project are described in Section 3. We conclude and
consider future work in Section 4.

2 Integrating An Ontology With A
Path Planner

a) Scenario

In its full generality, the problem of automated vehicle
path planning is extremely challenging. We limit our
focus to roadway driving, and the objects and obstacles
that might likely be encountered. We start with the
simple scenario illustrated in Figure 2. The
autonomous vehicle (black rectangle) is in the left lane
of a four-lane two-way undivided highway. An object
is detected in our lane. The goal is to formulate an
optimal route plan that takes into account the estimated
damage from a collision with the object. In this first

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 2

 implementation phase, the main role of the ontology
component is to provide assessments of collision
damage.

c) Overview of Ontology & Reasoning

The existing planner treats all objects as obstacles, and
uniformly plans to avoid all of them. The ontology and
reasoning component exploits the fact that only some
objects are obstacles that need to be avoided. For our
initial proof-of-concept experiments, we created a
small ontology with a few rules that can determine the
extent to which a given object may constitute an
obstacle in a given situation.

Figure 2: Simple Driving Scenario

The ontology contains a couple dozen objects ranging
from street signs to traffic barrels to bricks and
newspapers; most have very different characteristics.
We also created four kinds of [potentially autonomous]
vehicles: a van, a truck, a Hummer, and a motorcycle.
Again these have widely varying characteristics. Each
of the object classes in the ontology has a small set of
characteristics associated with them, focusing on the
object’s rigidity, movability, crushability, and
dimensions.

b) Constraints

Autonomous vehicle path planning places a number of
requirements on the ontology and the tool in which it is
implemented.

The attribute values for both the objects and the vehicle
types were stored in a qualitative way. For example, we
stated in the ontology that a fire hydrant has high
rigidity and low movability (since it is a fixed to the
ground).

• Our implementation platform – an autonomous

vehicle - requires real-time performance by the
nodes. Since the 4D/RCS architecture is
hierarchical, the definition of real-time will change
with level. At the level in which we are planning to
apply the ontology (the vehicle level), planning
decisions must be made within two seconds.

We also describe the damage classifications for the
collisions in qualitative terms. The vehicle damage
classification can be one of five enumerated values:
none, minor, moderate, major, and catastrophic.
 • In the 4D/RCS architecture, the behavior

generation component makes calls to the value
judgment component for each node in the plan
graph that is generated by the cost-based planner.
As there may be thousands of nodes in a plan, any
ontology reasoning engine operating within the
value judgment module must support high
transaction rates.

Based upon the objects’ and the vehicles’
characteristics, we developed a set of rules that
described how to combine various sets of
characteristics to determine a qualitative cost for the
collision. The first rule below states that if a situation
exists in which a truck collides with a brick, this results
in a situation whereby there is no damage to the
vehicle. The second rule states that if a car or a van
collides into a rigid fixed object (such as a fire
hydrant), then there is catastrophic damage to the
vehicle.

• There are concepts in the ontology that express

relationships between measured properties, e.g. the
closing velocity of the vehicle and object and the
ratio of their masses. This necessitates the ability
to represent and reason about (i.e. do computation
with) real, continuous-valued variables.

;;; Truck + Brick = None.
 (implies
 (and situation

 (some has-vehicle truck)
 (some has-potential-obstacle
 brick))

• The nature of the problem is such that the system
performance must degrade smoothly.
Conceptually this means that the ontology must
include general (default) reasoning in addition to
support for specific situations.

 sit-VD-None)

;;;(Car or Van)+Rigid-Fixed-Object=Catastrophic.
 (implies
 (and situation
 (some has-vehicle (or car van)) In our initial implementation, we have met some but

not all of these requirements; this is discussed below. (some has-potential-obstacle
 rigid-fixed-object))

 sit-VD-Catastrophic)

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 3

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 4

See [8], for more details on the ontology and the
knowledge representation issues. Next, we consider
some of the implementation details.

d) Implementation Details

We cast the problem of assessing collision damage as
one of classification into one of several pre-existing
categories (from none to catastrophic), as noted above.
The use of description logic [4] is an obvious choice
for classification reasoning. Description logic
reasoners are finely tuned for performing classification,
and thus are very fast for the type of reasoning we
require. This is important because the planner needs to
query the ontology component up to a few thousand
times a second to get damage estimates for the many
nodes being explored in the search space. Another
important advantage of using description logic is
automated semantic consistency checking to ensure
that there are no logical errors in the ontology. For
example, when creating an ontology about farm
animals, one might say the following: 1) cows & sheep
are animals; 2) cows are vegetarians; 3) vegetarians eat
no animals, and eat no parts of any animal; 4) mad
cows eat the brains of sheep, and 5) a mad cow is a
kind of cow. However, there is an inconsistency
lurking: a mad cow can't be a kind of cow because that
means it is a vegetarian that eats sheep brains.1 The
system can detect inconsistencies such as these that can
only be explained by chains of reasoning steps.
Automated detection of such errors greatly increases
confidence that the ontology is correct.

We started out by using the ontology editing tool,
OilEd [6] to construct our ontology, and the FaCT
inference engine2 to 1) check for semantic consistency
and 2) perform the damage assessment reasoning.
FaCT is directly connected to OilEd, so consistency
checking is done by pressing a button. Various minor
semantic bugs were identified and manually fixed. This
works much like a type checker in a programming
environment. Using the OilEd/FaCT combination, we
identified a variety of possible situations, simulating
the reasoning that would eventually be done on-board
the vehicle, to ensure that the results were correct.

For the purpose of this implementation, we assumed
that all objects in the environment were fully
recognized. As such, the values of the object’s
attributes were be stored a priori in the ontology and
compared with the data coming from the autonomous
vehicle’s planning system. When a vehicle encountered
an object that was represented in the ontology, the
values of the attributes of that object were used to help

1 Example is from the OilEd/FaCT download.
2 See: http://www.cs.man.ac.uk/~horrocks/FaCT/

determine the cost of collision. For example, when the
vehicle encountered a traffic barrel, the traffic barrel
object represented in the ontology was accessed and
the values of the attributes that were predefined for a
traffic barrel were utilized.

The next step was to integrate the FaCT inference
engine running as a server with the planner using
function calls from the planner to the server. The
planner required a C++ interface which FaCT lacked;
instead, we chose an alternative description logic
inference engine: RACER [8].

Connecting RACER to the planner was fairly straight-
forward. We did encounter some difficulties in
converting the ontology to a format suitable for
uploading into RACER. Although OilEd exports to a
format that RACER should be able to import, there
were some compatibility problems. For expedience in
getting the demonstration working, we manually
encoded portions of the OilEd ontology into a Lisp
syntax suitable for RACER. During this process, we
made certain enhancements and additions to the
ontology. At this temporary stage in development, we
now have no ontology editing tool that we can use to
view and maintain the ontology. This reflects the
relatively immature support for interoperability that
exists in today’s ontology tools.

With an enhanced ontology, we connected RACER to
the planner. When the planner requires a collision
damage assessment, the planner passes to RACER the
type of vehicle it is and the type of object it
encountered in the environment. Using classification
rules, the inference procedure classifies the current
situation into one of the pre-determined damage
categories. The rules map certain types of vehicles and
objects, based on their characteristics, to the damage
categories. For example, the situation called: “sit-VD-
Catastrophic” is the name of the situation which is
defined to be any whose hasVehicleDamage
attribute is equal to “CS-Catastrophic”3. The
qualitative damage category is passed back to the
planner, which converts it to a numeric cost suitable
for use in its numeric search algorithms.

For our proof-of-concept demonstration, the planner is
connected to a driving simulation package. We intend
to connect this up to a real vehicle in the near to
medium term.

Experimental Results

We performed four tests with the integrated planner
and ontology. In all cases, the planner evaluated a path

3 CS is for Cost Severity; VD is for Vehicle Damage.

http://www.cs.man.ac.uk/~horrocks/FaCT/

in which the vehicle, driving on a two-lane, one-way
roadway, encountered an object.

Case 1: Vehicle: Hummer Object: Brick

In this case, the Hummer ran over the brick. The
ontology and reasoner determined that a high rigidity,
large vehicle striking a high density, small object
would cause no damage.

Case 2: Vehicle: Hummer Object: Traffic Barrel

In this case, the Hummer changed lanes to avoid the
barrel. The ontology and reasoner determined that a
high rigidity, large vehicle striking a high density,
medium-sized object would cause significant enough
damage to justify the extra cost of changing lanes.

Case 3: Vehicle: Motorcycle Object: Brick

In this case, the motorcycle changed lanes to avoid the
brick. The ontology and reasoner determined that a
medium rigidity, medium-sized vehicle striking a high
density, small object would cause significant enough
damage to justify the extra cost of changing lanes.

Case 4: Vehicle: Motorcycle Object: Traffic Barrel

In this case, the motorcycle changed lanes to avoid the
barrel. The ontology and reasoner determined that a
medium rigidity, medium-sized vehicle striking a high
density, medium-sized object would cause significant
enough damage to justify the extra cost of changing
lanes.

The response time of the ontology for the purpose of
planning at the vehicle level seemed to be sufficient
considering the timing constraints placed on the
planner, though more trials would need to be
performed to verify this.

3 Observations

This first experiment showed that the integration of a
planner with an ontology was not only possible, but
also improves the decision that the planner made in the
presence of certain objects. Without the ontology
integrated, the planner avoids all obstacles,
independent of their type. While this is the most
conservative approach to driving, it also causes the
vehicle to perform unnecessary lane changes, which
puts the vehicle in more jeopardy than necessary.

However this was just the first step. In this section, we
reflect on the choices we made, indicating what worked
well and where changes and improvements are
necessary in the future. Many things were not taken
into account during this initial exercise that would need

to be in a fielded version of the ontology. They include
the vehicle’s speed, the vehicle’s condition before
striking the obstacle, additional qualitative
characteristics of the object and the vehicle, and the
mission the vehicle is performing. These issues, among
others, are discussed in more detail in this section. For
each we indicate what has been done already, vs. what
is planned for future work.

a) Obstacles as Roles

An initial examination of the driving scenario led to the
recognition that an obstacle is a role that an object
plays in a certain situation. A person walking along the
sidewalk is not an obstacle to a vehicle on the road;
however that same person in the same location dashing
toward the road to get a ball is an obstacle to be
avoided. A general theory of obstacles should define a
set of conditions that determine whether an object is an
obstacle. That determination depends on the
relationship between the object and another entity (for
us, an autonomous vehicle). If the relationship entails
impeding the progress of the vehicle, or impeding the
vehicle’s ability to carry out its goals, then the object is
an obstacle.

Recognizing the situation-dependent nature of
obstacles, we created a generic notion called Situation
for collecting information that is relevant for
determining whether objects are obstacles that must be
avoided. This has proven to be an excellent choice.

In our initial implementation, each situation has an
associated autonomous vehicle and a potential obstacle.
In turn, the vehicles and obstacles have associated
properties such as rigidity, weight and density that are
used to determine potential collision damage. In future
implementations, we will add other important factors
such as driving speed, road conditions, vehicle
clearance, object height, etc.

b) Colliding With Objects Incurs a Cost

As mentioned previously, we are using ontology
reasoning to assist the planner in determining possible
collision damage. Operationally, we provide inputs to
the value judgment module (Figure 1) for use in
computing costs for plan segments. This led us
immediately to view collisions with obstacles as cost
factors. In this formulation, colliding with a rigid fixed
object (e.g. a large cinder block) results in a higher cost
than colliding with a small crushable object (e.g. a
paper on the road). No damage corresponds to zero

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 5

cost, in which case the object is not an obstacle for that
situation4.

This approach seemed both intuitive and easy to
integrate into a value judgment calculation. However,
examination of several simple scenarios led to the
realization that constructing these costs would not be
straightforward. Consider the following situations:

• You are driving by yourself in heavy traffic
when you encounter a brick in your lane.

• You are carrying a piece of sensitive, fragile
equipment when you encounter a brick in your
lane.

• You are delivering urgent medical supplies
when you encounter a brick in your lane.

• You are delivering urgent medical supplies
when you encounter a small child in your lane.

Discussion of these scenarios led us to recognize that
damage to the vehicle is not the only thing to consider
in evaluating a potential collision. We must also take
into account the amount of damage incurred by the
payload, as well as the damage to the potential
obstacle. More conservative driving is called for if the
payload is both fragile and valuable. Also, a vehicle
carrying urgent medical supplies may risk damage to
the vehicle by running over a brick, but not by running
over a small child. Hence Payload information must
be included in the Situation description, in addition to
information about the vehicle and the potential
obstacle. Note that the potential obstacle is used in two
ways to assess damage: the damage to the object itself,
and the damage to the vehicle resulting from a collision
with the object.

In the initial implementation, we have three situation
attributes for characterizing collision damage: vehicle
damage, object damage and payload damage. The
planner converts the qualitative damage assessment
categories (from None to Catastrophic) into numeric
costs.

c) The Situation must consider the Mission

The above scenarios also led to the identification of the
Mission as an important factor in determining cost.
This is expressed in terms of the relative importance
placed on maintaining or restricting the values for the
integrity of the vehicle, the payload and the obstacle.

If the mission is to get from point A to point B as
quickly as possible, regardless of the resulting
condition of the vehicle or the payload, one can

visualize the typical Hollywood car chase – nothing is
an obstacle. In our formalization, for this mission all
obstacles would have zero cost.

However, in a more typical mission, such as
commuting to work, there is a desire to minimize
damage to the vehicle and the payload (the driver and
passengers). In this situation, most obstacles would
have a significant cost.

We have not yet begun exploring approaches for
representing the mission requirements in our ontology.

d) Damage Costs must be Accumulated

Our original formulation only considered the estimated
damage from a single collision; we [implicitly]
assumed that the vehicle [or object or payload] was
already in perfect condition. We did not distinguish
between the incremental damage due to a particular
collision, and the overall integrity of the vehicle, which
could have suffered prior collisions. For example, a
vehicle might have a wheel that is close to falling off,
so that a collision that would be inconsequential for a
new vehicle would be significant for this one. One can
also envision scenarios (e.g. driving on a fresh gravel
road) where repeated minor collisions eventually result
in major damage. What is important to a navigation
decision is not the incremental damage to a given
collision, but rather the overall integrity of the vehicle,
object, or payload that would result from that collision.
The latter takes into account the pre-collision integrity
as well as the incremental damage due to the current
collision.

Integrity is a property of Object, and qualitatively
describes the condition of that object with respect to
the amount of damage it has accumulated. After a
collision, the object integrity might remain the same, or
decrease. Note that integrity is inversely related to the
accumulated damage to the object. So an accumulated
damage category called “None” corresponds to the
highest level of integrity, and “Catastrophic” means the
integrity has vanished. Accumulation of damage has
been partially implemented.

Limitations of description logics prevented a more
complete implementation and necessitate a move to
different ontology tools. Anticipating ontology tools
that can do the required reasoning, we have created a
knowledge base of rules that map the current integrity
value to the new value after a collision for each of:
Vehicle, Obstacle and Payload. Thus, for the scenario
where a vehicle collides with a melon, the vehicle and
payload integrity would be unchanged, but the melon’s
integrity would vanish; it would be destroyed. An
example of a more general rule is summarized in the
table below.

4 An alternate view is that all objects are obstacles and
zero cost corresponds to the degenerate case of an
obstacle.

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 6

• Dimensions (height, transverse length, longitudinal
length)

Initial Damage Final Damage

None Moderate
Minor Moderate

Moderate Severe
Severe Catastrophic

Catastrophic Catastrophic (unchanged)

• Sharpness
• Shatterability/Breakability
• Elasticity

The initial implementation contains the first five of the
above characteristics. For each, quantitative
descriptions are used (e.g., high, medium, low) to
describe their value. This information is determined ‘a
priori’ (e.g., I know that a rubber ball is very crushable
and has low density). The above list is not meant to be
exhaustive; it will grow as the project progresses.

The right column indicates the resulting damage to the
vehicle, payload or obstacle given the initial damage in
the left column, and that the incremental damage due
the the current collision is moderate.

e) Obstacles have Qualitative Characteristics
 (which is what we really care about)

In future implementations, we hope to populate the
qualitative characteristics using sensor data. Based on
the sensor data, rules would be fired to match
perceived characteristics of the object to qualitative
descriptions. When a characteristic of the object cannot
be determined via sensor data (e.g. shatterability), this
information would be marked as unknown and the
application implementing the ontology would
determine how to handle it.

To determine the likely cost of a collision with an
object, you need to know certain characteristics of the
object. An empty cardboard box in the middle of the
road will cause minimal damage to a vehicle that
strikes it, compared to if the box contains a television
inside it. The more that is known about the
characteristics of the object, the better an
approximation can be made about the implications of
colliding with it. Identifying an object’s characteristics
can help identify the object. Also, if an object has been
identified, then the knowledge base can be consulted to
determine other characteristics of the object that may
not be visible (e.g., rigidity, elasticity, etc.). The key
oint is that damage determination is still based upon
the characteristics of the objects as opposed to the
object identification.

f) Dimensions, Orientation and Calculation

In working through the qualitative physics that
influence driving decisions (and determine the integrity
transformations), we realized an initial evaluation is
performed to determine which of three subclasses of
“collisions” will occur:

• the vehicle can avoid the obstacle, swerving
around it while remaining in its lane,

Even though a physics-based approach could provide
very detailed information about the damage that could
be caused by colliding with obstacles in the
environment, this is overkill for planning done at the
vehicle level. At this level, the planner does not care
about the details of momentum transfer or impact
calculations; it simply wants a rough classification of
what type of damage could be expected if collision
were to occur.

• the vehicle can pass over it, adjusting its path
so that the obstacle passes cleanly underneath,
or

• the vehicle will run into the obstacle.

Note that changing lanes and avoiding the obstacle are
not on this list; only the situations where the vehicle
and the object occupy the same space are considered.
 This is very similar to what human drivers do. They

see an object in the road that they may or may not
recognize, and make a quick determination of what
type of damage would be expected if they were to run
into this obstacle. There is no physics involved in this;
it is simply a high-level determination.

Thus, a brick at the edge of the lane need not be
considered as an obstacle (i.e., it has zero cost).
Similarly, a long board lying across the road will have
some non-zero cost, while the same board lying along
the lane will have a zero (or nearly zero) cost because
it is easily straddled.
 In our research, we have identified a set of

characteristics that appear to have the strongest impact
on determining the damage that can be incurred from
collision. They are:

These considerations require that we represent the
dimensions of obstacles in our ontology, as well as
some of the basic specifications of the vehicle (e.g.
wheel base and ground clearance) and the relative
orientation and position of the vehicle and obstacle. It
also requires that the ontology tool have the capability
for performing mathematical operations and
comparisons.

• Rigidity
• Density
• Weight
• Crushability
• Movability

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 7

In addition, due to the limitations posed by description
logics, as indicated in this paper, the rules will be
ported over to CLIPS and the ontology will be
developed in Protégé. CLIPS was chosen due to its
real-time capabilities and its ability to perform numeric
computations [11]. Protégé was chosen due to its
ability to export an ontology into CLIPS format, its
ease-of-use, and its strong user community. Very initial
efforts in using CLIPS and Protégé within this effort
have confirmed the appropriateness of these tools for
our purposes.

Pursuing the development of the qualitative physics,
we found that the closing velocity and the relative
masses of the Situation participants, both real-valued
quantities, were necessary to produce reasonable cost
values.

In the initial implementation relative masses objects
were considered. Orientation, velocity and various
computations will be included in future versions.

g) Description Logic is Limiting

As part of our reassessment, we are also attempting to
address a question that we posed for ourselves in [9]:

From our initial tests, it is clear that there are limits to
using a description logic ontology language and
reasoner for our task. For example, we cannot return
the value of the vehicle or payload integrity (as in a
function call) and indicate it as either unchanged or
that it has been incremented by some level in the
damage severity scale. There is no facility for doing
arithmetic (although arithmetic comparison such as
greater-than is possible). We might need to compute
the ratio of the weights of the potential obstacle and the
vehicle (if it was sufficiently high, then the obstacle
will cause at worst, minor damage). A DL is also very
limited in the kinds of rules that it can express. Similar
problems were discovered in an attempt to use
description logic classification to implement a semantic
publish and subscribe system [10].

• To what extent can a general theory of obstacles be
adapted to a wide variety of autonomous vehicle
applications? Can we have a single ontology for
multiple types of vehicles and contexts? How much
will they have to be tailored? This is analogous to
the long-time question about standard upper
ontologies (SUO), but within a limited domain. Can
there be a SUO of obstacles?

Guarino [7] suggests the concept of defining different
kinds of ontologies according to their level of
generality. We have developed a suggested
decomposition of the obstacle ontology into top-level,
domain, task and application ontologies using this
approach, as follows:

We are currently exploring different rule languages. In
the absence of a decision of which to use, we have
created a revised, rationalized and extended ontology
in a home-grown Prolog-like syntax, for eventual
encoding into a working system.

• Top-Level Ontologies
o Physical Objects

• Domain Ontology
o Vehicles
o Payloads

 o Road Segments (future)
o Rules of the road (future)

4 Future Work and Conclusion • Task Ontology
o Classification o Mission The overall goal of this work is to apply ontologies to

enhance the capabilities and performance of
autonomous vehicles, particularly in the area of path
planning. In order to do this, we are initially using an
ontology to determine the damage resulting from
collisions between autonomous vehicles and different
types of objects that could be encountered during on-
road driving.

• Application Ontology
o Vehicle Integrity Transformations

(future)
o Obstacle Integrity Transformations

(future)
o Payload Transformations (future)
o Situation Classification
o Obstacles Although our initial experiment showed promise, both

the ontology and the experiment lacked a number of
fundamental concepts that would be necessary for the
robustness of this approach could be proven. Concepts
such as the vehicle’s speed, the vehicle’s integrity
before striking the obstacle, additional qualitative
characteristics of the object and the vehicle, and the
mission the vehicle is performing will be added in
future versions of the ontology and reasoner.

From this decomposition, we suggest that the top-level,
domain and task ontologies can be adapted to a wide
variety of autonomous vehicle applications.
Demonstration of this result will depend, however, on
successfully resolving the issues that we have
identified with our current implementation.

References

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 8

Ontology-Based Methods for Enhancing Autonomous Vehicle Path Planning Page 9

 1. Albus, J., "Outline for a Theory of Intelligence,"
IEEE Transactions on Systems Man and
Cybernetics, Vol. 21, 1991, pp. 473-509.

 2. Albus, J. and et.al., "4D/RCS Version 2.0: A
Reference Model Architecture for Unmanned
Vehicle Systems," NISTIR 6910, National Institute
of Standards and Technology, Gaithersburg, MD,
2002.

 3. Albus, J. and Meystel, A., Engineering of Mind,
John Wiley & Sons, Inc. 2001.

 4. Baader, F., McGuinness, D., Nardi, D., and Patel-
Schnedier, F., Description Logic Handbook:
Theory, Implementation and Application,
Cambridge University Press 2002.

 5. Balakirsky, S. and Herzog, O., "Planning with
Incrementally Created Graphs," NIST, 6895,
Gaithersburg, MD, 2002.

 6. Bechhofer, S., Horrocks, I., Goble, C., and Stevens,
R., "OilEd: a reason-able ontology for the
semantic web," Proc. of the Joint German Austrian
Conference on AI, number 2174 in Lecture Notes
In Artificial Intelligence, Springer-Verlag, 2001,
pp. 396-408.

 7. Guarino, N. and Welty, C., "A Formal Ontology of
Properties," LADSEB/CNR Technical Report
01/2000, 2000.

 8. Haarslev, V. and Moller, R., "RACER System
Description," Proceedings of the First
International Joint Conference on Automation
Reasoning (IJCAR'01), number 2083 in Lecture
Notes in Artificial Intelligence, Springer-Verlag,
2001, pp. 701-705.

 9. Schlenoff, C., Balakirsky, S., Uschold, M.,
Provine, R., and Smith, S., "Using Ontologies to
Aid in Navigation Plannig in Autonomous
Vehicles," to appear in the Special Issue on
Ontologies and Distributed Systems in the
Knowledge Engineering Review, 2004.

 10. Uschold, M., Clark, P., Dickey, F., Fung, C.,
Smith, S., Uczekaj S., Wilke, M., Bechhofer, S.,
and Horrocks, I., "A semantic infosphere," Proc.
of the 2003 International Semantic Web
Conference (ISWC 2003), 2003.

 11. Zimmerman, N., Schlenoff, C., and Balakirsky, S.,
"Implementing a Rule-based System to Represent
Decision Criteria for On-Road Autonomous
Navigation," Proceedings of the 2004 AAAI Spring
Symposium on Knowledge Representation and
Ontologies for Autonomous Systems, 2004.

